Isolation and Structure of Sorrentanone: A New Tetrasubstituted Quinone from *Penicillium chrysogenum*

RAYMOND F. MILLER* and STELLA HUANG

Bristol Myers-Squibb Pharmaceutical Research Institute, Wallingford, CT 06492-7660, U.S.A.

(Received for publication January 17, 1995)

As microorganisms develop resistance to current antibiotic therapy, 1^{-3} the search for new bioactive compounds becomes more important. As part of our natural products screening process to identify new leads, we have isolated and characterized a novel tetrasubstituted quinone from a fermentation broth of *P. chrysogenum* SC 13887. This compound, which has been named sorrentanone [3-hydroxy-2,5-dimethyl-6-(1'-oxo-2',4'-dienylhexyl)-1,4-benzoquinone] (1) due to its distinctive sorrel color,⁴⁾ is active against both Grampositive and Gram-negative microorganisms.

Experimental

A culture of *P. chrysogenum* was fermented in the presence of SP-207 resin,⁵⁾ and the filter cake was extracted with *n*-BuOH. The crude butanol extract was concentrated at reduced pressure to afford a black oil, which was taken up in 9:1 MeOH-H₂O. The solution was washed with hexane $(2 \times 750 \text{ ml})$, extracted sequentially with CCl₄ (8 × 500 ml), and CHCl₃ (2 × 500 ml). The organic layers were combined and washed with H₂O (2 × 1 liter), were filtered with the aid of diatomaceous earth, and the solvent was removed at reduced pressure to afford a black solid. The material was taken up in 35% EtOAc in Hex and chromatographed on a silica gel 60 column (230~400 mesh, EM Science). Combination and concentration of the appropriate fractions at reduced pressure yielded 2.4 grams of a light orange solid, **1**.

Physico-chemical Characteristics

The physico-chemical properties of 1 are summarized in Table 1. Both the UV spectrum, with its strong K band at 272 nm, and the IR spectrum, with the carbonyl absorbance at 1654 cm^{-1} , are indicative of a quinone moiety. The structure of the quinone was determined using the NMR spectroscopic data summarized in Table 2. The ¹H NMR spectrum showed a spin system containing a methyl group (δ 1.80) and four vinyl protons (δ 6.11, 6.88, 6.16, and 6.17) suggesting the presence of a diene sidechain. The broad singlet peak at 8.06 ppm was assigned to the hydroxyl group based on its chemical shift, peak shape, and exchange experiments with D₂O. The two singlets appearing at 1.84 and 1.85 ppm represent the two independent methyl groups in the molecule.

In the ¹³C NMR spectrum, fourteen carbon signals were observed. The three peaks at lowest field (δ 193.3, δ 186.1, and δ 183.4) are characteristic of unsaturated

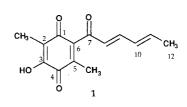


Table 1. Physico-chemical properties of sorrentanone.

Light orange solid
$C_{14}H_{14}O_4$
247 (M+H), 269 (M+Na),
285 (M + K)
(M+H): Calcd: 247.0970
Found: 247.0958
194 (5,300), 272 (8,700)
3376, 2856, 1654, 1632, 1596,
1436, 1392, 1382, 1362, 1318,
1236, 1220, 1144, 1070, 1006,
884, 824
Rf=0.44 in 5% MeOH/CHCl ₃

Table 2. NMR chemical shifts data for sorrentanone.

Atom	¹³ C	HETCOF	R COLOC	$^{1}\mathrm{H}$	COSY
1	186.1		1.84	8.06	
2	117.1		1.84	6.88	6.11,
					6.16
3	151.9		1.84	6.17	6.16,
					1.80
4	183.4		1.85	6.16	6.17,
					6.88
5	136.8		1.85	6.11	6.88
6	140.3		18.5,	1.85	
			6.11		
7	193.3		6.88,	1.84	
			6.11		
8	127.9	6.11	6.16	1.80	6.17
9	147.5	6.88			
10	130.1	6.16	6.11,		
			1.80		
11	142.8	6.17			
12	18.8	1.80			
13	7.7	1.84			
14	11.9	1.85			

Table 3. Antimicrobial activities of sorrentanone.

Strain No.	MIC (µg/ml)	
Staphylococcus pneumoniae A9585	32	
S. pyogenes A9604	16	
Enterococcus faecalis A20688	128	
S. aureus/Hetero MR A27218	32	
S. epidermidis A24548	32	
S. haemolytic A21638	64	

quinone carbonyl carbons. The protonated carbon signals (APT, δ 147.5, 142.8, 130.1, and 127.9) represent the diene sidechain.

Sorrentanone displays activity against both Grampositive and Gram-negative organisms. Table 3 shows MIC data against selected organisms.

Thus, a new bioactive quinone structure has been isolated from a fermentation broth containing *P. chrysogenum*. The structure and atom connectivity was established using 2D NMR techniques. The compound has weak to moderate activity against several Gramnegative and Gram-positive bacteria. Interestingly, the known compounds sorbicillin⁶⁾ and bisvertinolone⁷⁾ were also isolated from a similar fermentation broth and may share a common biogenetic precursor with 1.

References

- CHIN, G. J. & J. MARX: Resistance to antibiotics. Science 264: 359~393, 1994
- 2) SCHABERG, D. S.; D. CULVER & R. GAYNES: Major trends in the microbial etiology of nosocomial infections. Am.

J. Med. 91: 5S~72S, 1991

- PANLILO, A.; D. CULVER & R. GAYNES: Methicillinresistant Staphylococcus aureus in US hospitals: 1975~ 1991. Infect. Control Hosp. Epidemiol. 13: 582~586, 1992
- For related examples of this structural type, see: HORIUCHI, C. A. & Y. SUZUKI: A New synthesis of 3-hydroxy-2,5-dialkyl-1,4-benzoquinone from 3-halo-3,6dialkyl-1,2-cyclohexanedione using iodine-copper (II) acetate. Bull. Chem. Soc. Jpn. 62: 2919~2922, 1989, and references therein
- 5) As the result of a media study, it was found that the addition of SP-207 resin enhanced production of 1. For further details, see LAM, K. S.; J. A. VEITCH, G. A. HESLER, D. M. PIRNIK & S. FORENZA: manuscript in preparation
- D. J. CRAM: Mold metabolites: The structure of sorbicillin, a pigment produced by the mold *Penicillium* notatum. J. Am. Chem. Soc. 70: 4240, 1948
- TRIFONOV, L.; J. H. BIERI, R. PREWO, A. S. DREIDING, D. M. RAST & L. HOESCH: The constituners of vertinolide: A new derivative of tetronic acid, produced by *Verticillium interextum*. Tetrahedron 38: 397, 1982